
Advances in Science, Technology and Engineering Systems Journal
Vol. 4, No. 2, 01-07 (2019)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

The Chimera and the Cyborg
Hybrid Compute: In vivo HPC, Cloud and Container Implementations

Lev Lafayette*,1, Bernd Wiebelt2, Dirk von Suchdoletz2, Helena Rasche3, Michael Janczyk2, Daniel Tosello1

1University of Melbourne, Department of Infrastructure, Melbourne, Australia
2University of Freiburg, High Performance Computing, Freiburg, Germany
3University of Freiburg, de.NBI, Freiburg, Germany

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 15 August, 2018
Accepted: 03 February, 2019
Online: 10 March, 2019

Keywords:
Hybrid HPC/Cloud
High Performance Computing
Cloud Computing
High Throughput Computing
Containers

High Performance Computing (HPC) systems offer excellent metrics for
speed and efficiency when using bare metal hardware, a high speed in-
terconnect, and massively parallel applications. However, this leaves
out a significant portion of scientific computational tasks, namely high
throughput computing tasks that can be trivially parallelized and scien-
tific workflows that require their own well defined software environments.
Cloud computing provides such management and implementation flexi-
bility at the expense of a tolerable fraction of performance. We show two
approaches to make HPC resources available in a dynamically reconfig-
urable hybrid HPC/Cloud architecture. Both can be achieved with few
modifications to existing HPC/Cloud environments. The first approach,
from the University of Melbourne, generates a consistent compute node
operating system image with variation in the virtual hardware specifi-
cation. The second approach, from the University of Freiburg, deploys a
cloud-client on the HPC compute nodes, so the HPC hardware can run
Cloud-Workloads using the scheduling and accounting facilities of the
HPC system. Extensive use of these production systems provide evidence
of the validity of either approach.

1 Motivation

Modern research institutions increasingly employ dig-
ital methods and workflows, which require a corre-
sponding increase in the amount of computational
resources. As data sets grow the researchers’ own ma-
chines or large workstations no longer suffice, and they
must turn to other resources such as High Performance
Compute (HPC) and Cloud resources. Procurement,
installation, and operation of these compute resources
are demanding tasks which cannot be handled by indi-
vidual researchers and work groups any more. Central-
ization of resources and administration can leverage
economies of scale, but comes with compromises re-
garding hardware and software configurations that can
cater to the needs of a growing user base. Currently
neither HPC nor Cloud computing in isolation can
mesh the the demands of users with the needs and
resources of the compute centers.

University centers must find new, efficient ways to

cater to user desires of tailored infrastructures that
meets their computational needs. Any new solution
should provide comparable offerings regarding fea-
tures and pricing while avoiding overstretching exist-
ing personnel resources. Often demands for hardware
arise with short notice and for project durations well
below the normal cost amortization period of five to
six years. The typical challenges of university com-
puter centers are rooted in the very diversity of their
scientific communities; wide ranging requirements for
software, services, workflows, and compute resources.

Virtualization is a key technology from two fronts;
it can permit accommodating diverse user require-
ments with a largely centralized resource, and it can
help to isolate the different software environments and
hardware configurations. As many resources in re-
search infrastructures are inconsistently utilized, tap-
ping into cloud strategies can help to significantly save
on energy, personnel investment, and hardware re-
sources.

*Corresponding Author: Lev Lafayette, University of Melbourne, lev.lafayette@unimelb.edu.au

www.astesj.com 1

https://dx.doi.org/10.25046/aj040201

http://www.astesj.com
http://www.astesj.com

L. Lafayette et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 01-07 (2019)

This paper explores the possibility to overcome the
dichotomy of cloud and HPC with a single cohesive
system, and how such a setup can provide the perfor-
mance of an HPC system as well as the flexibility of a
cloud compute environment. Furthermore, the paper
discusses if such a single system can deliver the best
possible result for overall throughput and make bet-
ter use of computational resources. We examine two
practical approaches to make HPC resources available
in a dynamically reconfigurable hybrid HPC/Cloud
setup, both of which can be achieved with few mod-
ifications to existing HPC/Cloud environments. The
first approach (University of Melbourne) generates a
consistent compute node operating system image with
variation in the virtual hardware specification. The
second approach (University of Freiburg) deploys a
cloud-client on the HPC compute nodes, so the HPC
hardware can run Cloud-Workloads for backfilling free
compute slots. This paper is an extension of work orig-
inally presented in the 2017 IEEE 13th International
Conference on e-Science [1], with a new exploration of
container implementations in such environments.

2 The HPC/Cloud Conflict

HPC systems running massively parallel jobs require
a fairly static software environment, running on bare
metal hardware, with a high speed interconnect in or-
der to reach their full potential. Even then, they only
offer linear performance scaling for cleverly designed
applications. Massively parallel workloads need to be
synchronized. Fitting several of these jobs into the in-
dividual nodes’ schedules will necessarily leave gaps,
since jobs have to wait until a sufficient number of
nodes become available. The scheduler is “playing
Tetris” with large, incompatible pieces, which can lead
to under-utilization of the whole system. In contrast,
cloud workloads typically consist of small tasks, each
only using fractions of the available compute resources,
but often in large quantities. Cloud computing offers
flexible operating system and software environments
which can be optimally leveraged in cases of embar-
rassingly parallel workloads that do not suffer from
slow inter-node connections. A cloud environment
offers more flexibility at the expense of the virtual-
ization overhead and the loss of efficient, multi-node
high-speed low-latency communication.

Large scale projects, e.g. the Large Hadron Collider
from the particle physicist community, have a tendency
to develop extremely large and complex software
stacks. There exists a well-founded lay-assumption
that a computational experiment that deals with ob-
jective values ought to be reproducible by other re-
searchers. However this is often not the case as re-
searchers are unaware of the details of their operating
environment (operating system, application, and de-
pendencies etc) [2]. One potential solution to the repro-
ducibility issue is to be found in containerisation tech-
nology, which permits encapsulation of the entire op-
erating environment. Unfortunately this approach has

a couple costs; there is a modest performance penalty,
and it requires that the container owner manages be
the entire environment.

In addition to the more general problems of HPC
and Cloud workloads, finding a truly optimal hybrid
system should also consider resource allocation issues.
An often encountered instance of this problem is when
one parallel application on a HPC system requests 51%
of the available resources while another application
needs 50% of said resources. It is impossible to co-
locate these workloads, which unfortunately leave a
large portion of nodes idle if those are the only two
tasks scheduled. Another resource allocation prob-
lem arises in the scheduling of jobs which different
behaviours. In the case where two types of jobs (single-
node, short term vs. multi-node, longer term) are sub-
mitted to a job scheduler with backfilling to maximise
resource utilisation, the overall system can still expe-
rience sub-optimal utilization. The single node jobs,
request fewer resources and will have priority over the
multinode jobs, thereby reducing the cost-effectiveness
of the expensive high-speed interconnect and resulting
in idle cluster resources.

When looking for a hybrid system which offers flex-
ibility and performance in the face of such problems, it
is also worth noting that applications and their datasets
usually have varied and characteristic computational
workflows that are more or less appropriate for differ-
ent computational architectures. It is certainly prefer-
able from a user’s perspective that a single system is ca-
pable of adapting to these diverse requirements, rather
than requiring the user to migrate data between differ-
ent systems depending on the task. A hybrid system
must be found in order to address these sub-optimal
resource utilization issues.

3 Hybrid Architectures

Both Melbourne and Freiburg Universities have been
operating various compute clusters for more than two
decades. While the variation in hardware architecture
has decreased, new possibilities have arisen from X86
hardware virtualization becoming ubiquitous. It has
allowed both sites to host multiple operating systems
on a single server and to strictly separate their com-
plete operating environments. Hardware and software
stacks are decoupled. While widespread in computer
center operation, virtualization is still underutilized
in HPC environments. Projects like hybrid cluster
approaches and the use of Virtualized Research Envi-
ronments (VRE) drastically changes the landscape.

3.1 HPC with Compute Nodes as Cloud
VMs

The University of Melbourne approach consists of a tra-
ditional HPC cluster with a high speed interconnect in
one partition (or queue), and an alternative partition
providing virtual machines (VM) managed through
OpenStack as compute nodes. Using the Slurm Work-

www.astesj.com 2

http://www.astesj.com

L. Lafayette et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 01-07 (2019)

load Manager multiple partitions are accessible; the
bare metal partition in place for a traditional HPC
architecture), while the National eResearch Collabora-
tion Tools and Resources project (NeCTAR) research
cloud provides generic virtual machines). Additionally
there are private departmental partitions (the “water”
and “ashley” partitions) , a specialist proteomics parti-
tion (“punim0095”), a general GPU partition, a large
general-purpose graphics processing (GPGPU) parti-
tion for recipients of a specific Linkage, Infrastructure,
Equipment, and Facilities (LIEF) grant from the Aus-
tralian Research Council, and others. In total there are
24 partitions, including those used for debugging and
testing purposes, and nodes can belong to multiple
partitions simultaneously. Despite their heterogenous
high level use cases, the general hardware specifica-
tions can be summarised as follows (Fig. 1):

• Physical partition: 12 core, Intel Xeon CPU E5-
2643 v3, 3.40GHz, 256GB RAM.

• Cloud partition: 8 core, Intel Haswell, 2.3GHz,
64GB RAM.

• GPGPU partition: 24 core, Intel Xeon E5-2650
v4, 2.20GHz, 128GB RAM, 4 Tesla P100 cards.

• Ceph filesystem: 4.5PB for /home, /project, and
/scratch storage.

• Network varies by partition; cloud partition on
10GbE with Cisco Nexus and physical partition
with Mellanox ConnectX4 cards and SN2100
switch.

The VMs on the cloud partition use a common im-
age just like the traditional HPC compute nodes, but
with differing virtual hardware based on the results
of job profiling and user requests. Each of these have
an nodelist and are generated by VM images. Deploy-
ment of compute node according to partition is carried
out with a simple script which invokes the OpenStack
Nova service to deploy specific images. These can be
deployed as either a static definition, or dynamically
using Slurm’s cloud-bursting capabilities. In addition
the login and management nodes are also deployed as
virtual machines.

Jobs are submitted to the Slurm workload manager,
specifying which partition that they wish to operate on.
The collection of virtual machines comes from the Mel-
bourne share of the Australian-wide NeCTAR research
cloud [3]. The VMs, with different virtual hardware,
can be configured flexibly into different partitions in
accordance with user needs. However, unlike a lot
of VM deployments, overcommitment of resources is
used. Early testing indicated that whilst there is good
boundary separation through the virtualisation model,
overcommit usage resulted in unexpected time mis-
match errors on concurrent compute tasks. As a result
the entire virtual machine architecture operates with a
1:1 ratio with physical machines. While this removes
the normal advantages of overcommit for scheduling

low utilization processes, it instead simplifies deploy-
ment and offers significant flexibility in extending or
reducing the size of partition as required.

Of particular importance is assuring that the HPC
“physical” partition has a high-speed interconnect. Mel-
lanox 2100 switches with 16 x 100Gb ports with a mix-
ture of 25/50/100Gb, maximum of 64 x 25Gb connec-
tions with RDMA over Ethernet and Cumulus Linux
OS. An Message Passing Interface (MPI) “ping-pong”
test was conducted between two compute nodes on sep-
arate infrastructure, with 40GbE RDMA over ethernet
receiving better latency results than 56Gb Infiniband
FDR14 on a comparable system [4].

3.2 HPC with Cloud VMs on Compute
Nodes

The University of Freiburg runs an HPC cluster for
Tier-3 users coming from different scientific communi-
ties and fields of interest. After a primary installation
of 752 nodes in 2016 the cluster now commands more
than 1000 compute nodes equipped with dual socket
10 core plus HT Intel Xeon E5-2650 v4, 2.20GHz CPUs
and 128GB of memory each. The local operating sys-
tem is remotely booted over the 1Gb Ethernet interface
which also handles most of the user traffic. The cluster
is equipped with 100Gb OmniPath offering 44 node
islands which are aggregated by 4 100 Gb links. This
high speed low latency network provides both MPI
functionality for HPC jobs and access to the BeeGFS
parallel filesystem.

Standard bare metal jobs are scheduled by Adap-
tive Moab. On top of the standard HPC jobs (bare
metal jobs), it enables users to run virtual machines
as standard compute jobs (VM jobs). In order to run
VMs on a compute node, a virtualization hypervisor
is installed on every compute node using the standard
Linux Kernel-based Virtual Machine (KVM) hypervi-
sor. This architecture enables users to run both bare
metal and VM jobs on the same hardware, through
the same resource manager, without partitioning the
cluster into isolated parts. Users that require a special
software environment and do not need direct access to
hardware can use the VM jobs which provide Virtual
Research Environments (VRE). A VRE in this instance
is a container image with a complete software stack
installed and configured by the user [5]. Thus, the
file system of a virtual machine or VRE is a disk im-
age presented as a single file. From the operator’s
perspective this image is a “black box” requiring no
involvement, provisioning, updating, nor any other
management effort. From the researcher’s perspective
the VRE is an individual virtual node whose operat-
ing system, applications and configurations as well
as certain hardware-level parameters, e.g. CPU and
RAM, can be configured fully autonomously by the
researcher.

On typical HPC clusters the resource management
is orchestrated through a scheduler. Since researchers
using a hybrid compute resource are allowed both to
submit jobs to the scheduler for bare metal computa-

www.astesj.com 3

http://www.astesj.com

L. Lafayette et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 01-07 (2019)

tion and initiate VRE jobs, it is necessary that the sched-
uler is also responsible for the resources requested by
virtual machines. If VMs are executed on the clus-
ter without the knowledge of the scheduler, resources
could get overbooked. A special workflow was devel-
oped to submit a request for a VM as a normal cluster
job and let the scheduler handle the request for a new
virtual machine. Thus, the hybrid HPC cluster con-
cept becomes flexible and independent of the actual
scheduler deployed.

The hybrid cluster setup is not without additional
costs. For the orchestration of the virtual machines
on the cluster the OpenStack framework is installed.
If a compute job is designed to run in a virtual envi-
ronment (VM) the Moab scheduler is configured to
instantiate this VM through the OpenStack API. Open-
Stack is selected for its modular architecture to allow
to choose the components needed for the cluster virtu-
alization, such as network, image handling or a web
interface and omit the rest. While introducing addi-
tional management and operational overheads, this
allows building a virtualization environment for the
cluster that meets the specific objectives. Four infras-
tructure nodes are dedicated to running the OpenStack
services and preparing VM images. These nodes are
not part of the compute resources available to the user.

3.3 Containerization

A further elaboration of the hybrid architecture is
the use of containers in either aforementioned model.
Whilst virtual machines simulate the hardware envi-
ronment (even in a 1:1 environment), a container vir-
tualizes at the operating system level. As containers
can be imported with a exact level of consistency this
is seen as solution to reproducibility issues in compu-
tation.

The most well-known application for containerisa-
tion is Docker. However Docker is not a good fit for the
common tasks in research computing [6]. Docker is
primarily designed for micro-services on an enterprise
level, or during software development on local systems.
Additionally, the Docker daemon runs as root, and the
group with root privileges, which has security implica-
tions, e.g. when mounting file systems. These scaling
and security issues leads HPC system administrators
to be resistant to the installation of Docker. As an alter-
native, Singularity can be deployed without the issues
of Docker, to obtain the benefits of containerisation [7].
Singularity is used at the University of Melbourne as
it has good integration with the Slurm Workload Man-
ager and MPI. Security issues are mitigated by ensur-
ing that user privileges inside the system are the same
as the privileges outside the system (i.e., as a user on
an HPC) and that there are no root-owned daemons or
root-level privileges for the group. Another container
technology that also is considered appropriate for high
performance compute environments is Shifter [8]. In
either case, these containers can run on HPC nodes,
whether they are bare-metal or virtualized, leading
to the interesting situation of a virtualized operating

environment (singularity) on a VM with its own oper-
ating environment, which is running on real hardware
with an additional operating environment. The saying
“that there is no cloud, there is just somebody else’s
computer” is doubly applicable for containers.

The following is a simple example to illustrate the
use of the container within a Slurm job script that
makes use of an existing container.

#!/bin/bash

#SBATCH --partition cloud

module load Singularity/2.4-GCC-6.2.0

singularity \

exec vsoch-hello-world-master.simg \

echo "Hello from inside my container!" \

> output.txt

Figure 1: Concept diagram of the hybrid research platform services,
combining bare metal and OpenStack resources at the University of
Melbourne depicting the various partitions.

4 Workflow Design

Given the two competing primary compute resource
variants, HPC scheduling and Cloud scheduling, it is
necessary to orchestrate both systems through a medi-
ator. In a hybrid approach one needs to define a pri-
mary scheduler which controls which jobs should run
on which worker node and instruct the other scheduler
to run within the boundaries of the other scheduler,
especially respecting the scheduling decision of the
other. The mediator could be a special service daemon
which waits for requests from users and administrators
and translates it to the OpenStack API and vice versa.

The University of Melbourne uses a traditional
HPC workflow where job submission with Slurm Work-
load Manager occurs on different partitions according
to whether they are based on physical or cloud archi-
tectures. At the University of Freiburg three workflows
are present; job submission via Moab scheduler with-
out running a resource manager client in the VM, job
Submission via Moab scheduler with a resource man-
ager client, The Terascale Open-source Resource and
QUEue Manager (TORQUE) running in the VM, and
job submission via OpenStack Dashboard/API.

www.astesj.com 4

http://www.astesj.com

L. Lafayette et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 01-07 (2019)

4.1 Job Submission with Slurm Scheduler
for different Partitions

A standard batch job submission workflow is a key part
of the architecture. This follows the well-known path
in HPC for job submission. As a unique feature, the
placement of the virtual machine on the cluster nodes
is scheduled by Moab and the job lifetime is coupled
to the lifetime of the VM. This allows for a seamless
integration with the jobs sent by other user groups and
honors the fairshare policies of the cluster. A batch
script makes resource requests on a particular parti-
tion. Based on the resource request, the information
received from resource manager daemons, and the fair-
share policies in place, the scheduler will allocate a
time when the job will run which may change if other
jobs finish early etc. At the appropriate time, the job
will launch on one or more compute nodes, run, and
write the relevant processed data and output to the di-
rectories as specified. The developed thin integration
layer between OpenStack and Moab can be adapted to
other batch servers and virtualization systems, making
the concept also applicable for other cluster operators.

In the University of Melbourne model, the Slurm
workload manager acts as the job scheduler and re-
source manager. Different partitions refer to the
queues which a user may submit jobs and are var-
ied by the physical or virtual hardware that have
been provisioned (e.g., #SBATCH --partition=cloud

or #SBATCH --partition=physical). For single node
jobs, whether single or multi-core, a low speed (Eth-
ernet) network and virtual machines are suitable,
whereas for multinode jobs the physical partition with
a high-speed interconnect is used. Thus, the physical
architecture is optimised for the type of computational
task required, increasing overall throughput and more
efficiently allocating resource.

4.2 Job Submission via Moab Scheduler
without running a Resource Manager
Client in the VM

At the University of Freiburg, one use case is where
users provide their VM images themselves. These VM
images cannot be trusted and therefore they are not
allowed to access cluster resources like parallel storage
or user home directories. It is expected that the user is
working with an external resource manager or is using
the cloud-init procedure to start compute jobs within
the VM. In this case the user’s workflow is to submit a
cluster job through the scheduler msub/qsub and, if
resources are available, the job launches a virtual ma-
chine via the OpenStack API. When the VM boots data
and compute instructions have to be injected by an ex-
ternal resource manager or through cloud-init into the
virtual machine (possibly injecting the aforementioned
cluster job script).

4.3 Job Submission via Moab Scheduler
with a Resource Manager Client
(TORQUE) running in the VM

A second use case at the University of Freiburg is when
the user submits classic compute jobs to a different soft-
ware environment on the cluster (Fig. 2, left branch).
The software environment is represented by a VM in
this case. This makes it necessary to install and run
a TORQUE client in the virtual machine. In this use
case the workflow begins with the user submitting a
job through the scheduler (msub/qsub) with a spec-
ified image and job-script (e.g., msub -l image=¡id¿
job-script.sh). The job is then scheduled like any other
bare metal job. If and when resources are available this
job will trigger the start of a new virtual machine envi-
ronment through the OpenStack API. When the virtual
machine is booted the TORQUE client connects to the
TORQUE server and receives the job which then is
started within the VM. If this software environment is
provided by an external source (user virtual machine)
all necessary data has to be injected as well. This could
be achieved for example with the stagein and stageout
options from TORQUE.

4.4 Job Submission via OpenStack Dash-
board/API

The third use case from the University of Freiburg is
when the user submits compute jobs simply by creat-
ing a VM via the OpenStack web interface (Horizon)
or OpenStack API (Fig. 2, right branch). These virtual
machines then should be represented as a compute
job in the Moab scheduler. The compute job script is
injected via cloud-init into the virtual machine during
boot and is executed in the virtual machine after the
boot process is finished. In this use case the workflow
is initiated by the user starting a virtual machine in-
stance on the compute partition. OpenStack schedules
this VM as any other bare metal job and, when and if
resources are available, OpenStack will start up the vir-
tual machine on the resources previously assigned by
the Moab scheduler. When the virtual machine boots
data and compute instructions have to be injected by
an external resource manager or through cloud-init
into the virtual machine.

4.5 Script and Data Injection

In the University of Melbourne case the injection of
scripts and data to the virtual machine is not a signifi-
cant issue, as the virtual machines are simply another
node on the HPC system. The issues faced here are
the same as other HPC environments. Primarily this
means the need to firmly encourage users to manage
their data so that it is physically close to the site of
computation. Grace Hopper’s famous reminder [9] to
“mind your nanoseconds” is applicable even to many
research scientists who ask whether remote data can
have a mount-point on a HPC system in order to speed

www.astesj.com 5

http://www.astesj.com

L. Lafayette et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 01-07 (2019)

up their computational time, and even across all com-
pute nodes which are normally do not have access
outside of the system network for security reasons. A
more genuine issue is the access speed of shared mount
points across a system, and education on the need for
staging actions on local (e.g., /var/local/tmp) disk or
faster shared storage (e.g., /scratch) before copying
data to slower shared directories.

For Freiburg’s architecture the situation is more
complex. There are there possibilities to inject job
scripts into a VM: cloud-init, TORQUE client and an
external resource manager client.

• cloud-init: This is the easiest way to inject job
scripts into a VM. A job script has to be specified
when instantiating the VM. After booting the VM
the script gets executed automatically.

• TORQUE Resource Manager Client: Since the
Cluster uses the TORQUE resource manager new
“virtual” clients can be added dynamically and
so the job script will be injected directly through
the resource manager to the client. The only chal-
lenge is to signal the TORQUE Client running
the bare metal job not to execute the job script.

• External Resource Manager: If external schedul-
ing and resource managers are implemented by
a research group they can be used to inject job
scripts into the VM. Once the virtual resource
pops up after starting a VM on the bare metal
cluster it registers at its external resource man-
ager and then can be used as every other resource
of this Resource Manager.

The nature of the VM image defines the difficulty
of injecting data into the booted virtual environment.
Usually virtual research environments are built by re-
search groups containing the configuration and soft-
ware which is necessary to solve the problems of that
specific research groups. Since these VM images are
externally built, the instantiated environments can’t
be trusted. In such environments mounting home and
work directories is not allowed, so other methods for
data injection and result retrieval from these environ-
ments must be available. There are two possibilities to
do so:

• The job script can provide information on how to
transfer data by copying or streaming it through
the network

• The resource manager client features can be used
to stage data into the VM and stage out the re-
sults. TORQUE supports staging data by specify-
ing the options “stagein” and “stageout”, the job
output is copied to the remote site automatically
if not specified otherwise in the TORQUE client
config ($usecp).

For trusted virtual environments provided by clus-
ter administrators, these issues are not present. For
example replicating a modules software environment

for experimental particle physicists. These virtual en-
vironments are fully controlled by the same people
running the bare metal environment and so can be
trusted. In these environments, home and work direc-
tories can be mounted, and users can be identified and
authorized through the same mechanisms as in the un-
derlying bare metal environment. They can be simply
leveraged by users as special software environments
with no difference to the bare metal system (ignoring
the fact, that it wouldn’t support multi-node usage).

Figure 2: The Freiburg HPC cluster user has multiple options to sub-
mit compute jobs, either via the traditional way submitting it to the
scheduler (left branch) or interactively by starting an appropriate
virtual machine containing the relevant workflow (right branch).

5 Conclusions

Hybrid clusters make research groups more indepen-
dent from the base software environment defined by
the cluster operators. Operating VREs brings addi-
tional advantages like scientific reproducibility but
may introduce caveats like lost cycles or a layered job
scheduling. However, the advantages of this approach
makes HPC resources more easily available for broader
scientific communities. Both models are meant to be
easily extensible by additional resources brought in by
further research groups.

The two models - HPC with Cloud VMs on Com-
pute Nodes, and HPC with Compute Nodes as Cloud
VMs - represent different hybrid systems to solve dif-
ferent problems. In effect, the University of Freiburg
model provides a “cyborg”, where the HPC com-
pute nodes are replaced with cloud virtual machines,
whereas the University of Melbourne model provides
a “chimera”, a multi-headed beast where the virtual
machines have become new cloud nodes. In the for-
mer case there was a desire to make existing compute
nodes available to researchers for their particular con-
figurations. In the latter case there was a desire to
make virtual machines accessible to an HPC system
to increase cost efficiency and improve throughput.

www.astesj.com 6

http://www.astesj.com

L. Lafayette et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 01-07 (2019)

The two approaches illustrate the importance of HPC-
Cloud hybrids in general purpose research computing.

Migrating complex and diverse software stacks to
new HPC systems every few years constitutes a major
effort in terms of human resources. By virtualization
of these complex software environments, one sacrifices
a fraction of performance, but one gains the possibility
to run these complex software environments in cloud
systems and thus literally anytime, anywhere and on
any scale. This flexibility, in many cases, outweighs the
loss in performance [10, 11, 12].

For future developments, the University of Mel-
bourne plans to extend their model to provide the abil-
ity to include cloud bursting to external providers (e.g.,
Amazon, Azure), and hosting highly varied X86 con-
figurations on the same system, although this requires
equivalent real or virtual hardware, partial replication
of the operating environment, and accounting for la-
tency between the local and remote sites. A further op-
tion of HPC cloud-bursting that will be subject to fur-
ther investigation is Moab/NODUS cloud-bursting by
Adaptive Computing. The principles used by NODUS
are similar to the exploration here; a workload queue
has an elastic trigger that uses an API key to an tem-
plate image which then invokes nodes, deploys upon
them and potentially cluster nodes simultaneously,
completes the job, and transfers the data as necessary.
The ability for fine-grained task parallel workloads
across local HPC and remote cloud providers suggests
an obvious difficulty.

The University of Freiburg model is rather com-
plex and took a while to mature. It is in production
since the official start of the cluster in mid 2016. The
HPC/cloud group hopes to improve their model, map-
ping Moab commands to OpenStack commands allow-
ing to pause/hibernate and resume the virtual machine
for preemption or maintenance instead of killing a job.
In addition the possibility of mapping the live migra-
tion of virtual machine to Moab during runtime will
give the opportunity to migrate compute jobs during
runtime to optimize the overall cluster utilization. For
the next generation HPC cluster we will reconsider the
options to reduce the complexity of the VRE schedul-
ing. Following the Melbourne model a distinct cloud
partition for the future system is definitely an option.

Acknowledgment Lev Lafayette would like to thank
Bernard Meade, Linh Vu, Greg Sauter, and David Perry
from the University of Melbourne for their contribu-
tions to this document. The authors from Freiburg
University would like to thank the Ministry of Science,
Research and the Arts of Baden-Württemberg (MWK)
and the German Research Foundation (DFG) which
funded both the research infrastructure NEMO and
the ViCE eScience project on Virtual Research Envi-
ronments.

References
[1] L. Lafayette and B. Wiebelt, “Spartan and NEMO: Two HPC-

cloud hybrid implementations,” in 13th International Confer-
ence on e-Science, IEEE, oct 2017.

[2] V. V. Sochat, C. J. Prybol, and G. M. Kurtzer, “Enhancing re-
producibility in scientific computing: Metrics and registry for
singularity containers,” PLOS ONE, vol. 12, p. e0188511, nov
2017.

[3] Z. Li, R. Ranjan, L. O'Brien, H. Zhang, M. A. Babar, A. Y.
Zomaya, and L. Wang, “On the communication variability
analysis of the NeCTAR research cloud system,” IEEE Systems
Journal, vol. 12, pp. 1506–1517, jun 2018.

[4] B. Meade, L. Lafayette, G. Sauter, and D. Tosello, “Spartan
HPC-Cloud Hybrid: Delivering performance and flexibility,”
2017.

[5] M. Janczyk, B. Wiebelt, and D. von Suchodoletz, “Virtualized
research environments on the bwForCluster NEMO,” in Pro-
ceedings of the 4th bwHPC Symposium, 2017.

[6] G. Kurtzer, “Singularity: Containers for science, reproducibil-
ity, and high performance computing.” Keynote at Stanford
Conference, 2017.

[7] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scien-
tific containers for mobility of compute,” PLOS ONE, vol. 12,
p. e0177459, may 2017.

[8] D. M. Jacobsen and R. S. Canon, “Contain this, unleashing
docker for HPC,” in Proceedings of the Cray User Group, 2015.

[9] L. Gilbert, Particular Passions: Grace Murray Hopper (Women of
Wisdom). Lynn Gilbert Inc., 2012.

[10] A. Gupta and D. Milojicic, “Evaluation of HPC applications on
cloud,” in Sixth Open Cirrus Summit, IEEE, oct 2011.

[11] P. Church and A. Goscinski, “Iaas clouds vs. clusters for hpc:
a performance study,” in Cloud Computing 2011 : The 2nd
International Conference on Cloud Computing, GRIDS, and Vir-
tualization, pp. 39–45, IARIA, 2011.

[12] A. Marathe, R. Harris, D. K. Lowenthal, B. R. de Supinski,
B. Rountree, M. Schulz, and X. Yuan, “A comparative study of
high-performance computing on the cloud,” in Proceedings of
the 22nd international symposium on High-performance parallel
and distributed computing - HPDC '13, ACM Press, 2013.

www.astesj.com 7

http://www.astesj.com

	Motivation
	The HPC/Cloud Conflict
	Hybrid Architectures
	HPC with Compute Nodes as Cloud VMs
	HPC with Cloud VMs on Compute Nodes
	Containerization

	Workflow Design
	Job Submission with Slurm Scheduler for different Partitions
	Job Submission via Moab Scheduler without running a Resource Manager Client in the VM
	Job Submission via Moab Scheduler with a Resource Manager Client (TORQUE) running in the VM
	Job Submission via OpenStack Dashboard/API
	Script and Data Injection

	Conclusions

